dc.creatorOliva, Damian Ernesto
dc.creatorTomsic, Daniel
dc.date.accessioned2018-05-30T13:45:39Z
dc.date.accessioned2018-11-06T13:21:24Z
dc.date.available2018-05-30T13:45:39Z
dc.date.available2018-11-06T13:21:24Z
dc.date.created2018-05-30T13:45:39Z
dc.date.issued2016-09
dc.identifierOliva, Damian Ernesto; Tomsic, Daniel; Object approach computation by a giant neuron and its relation with the speed of escape in the crab Neohelice; Company of Biologists; Journal of Experimental Biology; 219; 9-2016; 3339-3352
dc.identifier0022-0949
dc.identifierhttp://hdl.handle.net/11336/46579
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1874653
dc.description.abstractUpon detection of an approaching object, the crab Neohelice granulata continuously regulates the direction and speed of escape according to ongoing visual information. These visuomotor transformations are thought to be largely accounted for by a small number of motion-sensitive giant neurons projecting from the lobula (third optic neuropil) towards the supraesophageal ganglion. One of these elements, the monostratified lobula giant neuron of type 2 (MLG2), proved to be highly sensitive to looming stimuli (a 2D representation of an object approach). By performing in vivo intracellular recordings, we assessed the response of the MLG2 neuron to a variety of looming stimuli representing objects of different sizes and velocities of approach. This allowed us to: (1) identify some of the physiological mechanisms involved in the regulation of the MLG2 activity and test a simplified biophysical model of its response to looming stimuli; (2) identify the stimulus optical parameters encoded by the MLG2 and formulate a phenomenological model able to predict the temporal course of the neural firing responses to all looming stimuli; and (3) incorporate the MLG2-encoded information of the stimulus (in terms of firing rate) into a mathematical model able to fit the speed of the escape run of the animal. The agreement between the model predictions and the actual escape speed measured on a treadmill for all tested stimuli strengthens our interpretation of the computations performed by the MLG2 and of the involvement of this neuron in the regulation of the animal's speed of run while escaping from objects approaching with constant speed.
dc.languageeng
dc.publisherCompany of Biologists
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://jeb.biologists.org/content/219/21/3339.abstract
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1242/jeb.136820
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectVISION
dc.subjectCOLLISION AVOIDANCE
dc.subjectBEHAVIOUR
dc.subjectCRAB
dc.titleObject approach computation by a giant neuron and its relation with the speed of escape in the crab Neohelice
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución