dc.creatorAmster, Pablo Gustavo
dc.creatorClapp, Mónica
dc.date.accessioned2017-04-06T20:43:45Z
dc.date.accessioned2018-11-06T13:18:00Z
dc.date.available2017-04-06T20:43:45Z
dc.date.available2018-11-06T13:18:00Z
dc.date.created2017-04-06T20:43:45Z
dc.date.issued2011-06
dc.identifierAmster, Pablo Gustavo; Clapp, Mónica; Periodic solutions of resonant systems with rapidly rotating nonlinearities; Amer Inst Mathematical Sciences; Discrete And Continuous Dynamical Systems; 31; 2; 6-2011; 373-383
dc.identifier1078-0947
dc.identifierhttp://hdl.handle.net/11336/14915
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1874036
dc.description.abstractWe obtain existence of T -periodic solutions to a second order system of ordinary differential equations of the form u´´ + cu´ + g(u) = p where c ∈ R, p ∈ C(R,R^N) is T -periodic and has mean value zero, and g ∈ C(R^N,R^N) is e.g. sublinear. In contrast with a well known result by Nirenberg, where it is assumed that the nonlinearity g has non-zero uniform radial limits at infinity, our main result allows rapid rotations in g.
dc.languageeng
dc.publisherAmer Inst Mathematical Sciences
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=6295
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3934/dcds.2011.31.373
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectNonlinear systems
dc.subjectPeriodic solutions
dc.subjectRapidly rotating nonlinearities
dc.subjectResonant problems
dc.titlePeriodic solutions of resonant systems with rapidly rotating nonlinearities
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución