dc.creator | Amster, Pablo Gustavo | |
dc.creator | Clapp, Mónica | |
dc.date.accessioned | 2017-04-06T20:43:45Z | |
dc.date.accessioned | 2018-11-06T13:18:00Z | |
dc.date.available | 2017-04-06T20:43:45Z | |
dc.date.available | 2018-11-06T13:18:00Z | |
dc.date.created | 2017-04-06T20:43:45Z | |
dc.date.issued | 2011-06 | |
dc.identifier | Amster, Pablo Gustavo; Clapp, Mónica; Periodic solutions of resonant systems with rapidly rotating nonlinearities; Amer Inst Mathematical Sciences; Discrete And Continuous Dynamical Systems; 31; 2; 6-2011; 373-383 | |
dc.identifier | 1078-0947 | |
dc.identifier | http://hdl.handle.net/11336/14915 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1874036 | |
dc.description.abstract | We obtain existence of T -periodic solutions to a second order system of ordinary differential equations of the form u´´ + cu´ + g(u) = p where c ∈ R, p ∈ C(R,R^N) is T -periodic and has mean value zero, and g ∈ C(R^N,R^N) is e.g. sublinear. In contrast with a well known result by Nirenberg, where it is assumed that the nonlinearity g has non-zero uniform radial limits at infinity, our main result allows rapid rotations in g. | |
dc.language | eng | |
dc.publisher | Amer Inst Mathematical Sciences | |
dc.relation | info:eu-repo/semantics/altIdentifier/url/https://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=6295 | |
dc.relation | info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3934/dcds.2011.31.373 | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
dc.rights | info:eu-repo/semantics/restrictedAccess | |
dc.subject | Nonlinear systems | |
dc.subject | Periodic solutions | |
dc.subject | Rapidly rotating nonlinearities | |
dc.subject | Resonant problems | |
dc.title | Periodic solutions of resonant systems with rapidly rotating nonlinearities | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas | |