dc.creatorGallardo Gutiérrez, Eva A.
dc.creatorGorkin, Pamela
dc.creatorSuarez, Fernando Daniel
dc.date.accessioned2017-06-08T14:56:17Z
dc.date.available2017-06-08T14:56:17Z
dc.date.created2017-06-08T14:56:17Z
dc.date.issued2012-04
dc.identifierGallardo Gutiérrez, Eva A.; Gorkin, Pamela; Suarez, Fernando Daniel; Orbits of non-elliptic disc automorphisms on H p; Elsevier Inc; Journal Of Mathematical Analysis And Applications; 388; 2; 4-2012; 1013-1026
dc.identifier0022-247X
dc.identifierhttp://hdl.handle.net/11336/17757
dc.description.abstractMotivated by the Invariant Subspace Problem, we describe explicitly the closed subspace H2 generated by the limit points in the H2 norm of the orbit of a thin Blaschke product B under composition operators Cϕ induced by non-elliptic automorphisms. This description exhibits a surprising connection to model spaces. Finally, we give a constructive characterization of the Cϕ-eigenfunctions in H p for 1 p ∞.
dc.languageeng
dc.publisherElsevier Inc
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jmaa.2011.10.048
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X11009905?via%3Dihub
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectBlaschke Products
dc.subjectInvariant Subspaces
dc.subjectEigenfunctions of Composition Operators
dc.titleOrbits of non-elliptic disc automorphisms on H p
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución