dc.creatorAreces, Carlos Eduardo
dc.creatorBlackburn, Patrick
dc.creatorHuertas, Antonia
dc.creatorManzano, Maria
dc.date.accessioned2018-01-19T15:16:10Z
dc.date.accessioned2018-11-06T12:58:50Z
dc.date.available2018-01-19T15:16:10Z
dc.date.available2018-11-06T12:58:50Z
dc.date.created2018-01-19T15:16:10Z
dc.date.issued2014-05
dc.identifierAreces, Carlos Eduardo; Blackburn, Patrick; Huertas, Antonia; Manzano, Maria; Completeness in Hybrid Type Theory; Springer; Journal of Philosophical Logic; 43; 2-3; 5-2014; 209-238
dc.identifier0022-3611
dc.identifierhttp://hdl.handle.net/11336/33948
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1871830
dc.description.abstractWe show that basic hybridization (adding nominals and @ operators) makes it possible to give straightforward Henkin-style completeness proofs even when the modal logic being hybridized is higher-order. The key ideas are to add nominals as expressions of type t, and to extend to arbitrary types the way we interpret @i@i in propositional and first-order hybrid logic. This means: interpret @iαa@iαa , where αaαa is an expression of any type aa , as an expression of type aa that rigidly returns the value that αaαa receives at the i-world. The axiomatization and completeness proofs are generalizations of those found in propositional and first-order hybrid logic, and (as is usual inhybrid logic) we automatically obtain a wide range of completeness results for stronger logics and languages. Our approach is deliberately low-tech. We don’t, for example, make use of Montague’s intensional type s, or Fitting-style intensional models; we build, as simply as we can, hybrid logicover Henkin’s logic.
dc.languageeng
dc.publisherSpringer
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10992-012-9260-4
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10992-012-9260-4
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectHybrid logic
dc.subjectType theory
dc.subjectHigher-order modal logic
dc.subjectNominals
dc.subject@ operators
dc.titleCompleteness in Hybrid Type Theory
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución