dc.creatorChernousov, V.
dc.creatorGille, P.
dc.creatorPianzola, Arturo
dc.creatorYahorau, U.
dc.date.accessioned2018-01-09T17:19:35Z
dc.date.accessioned2018-11-06T12:58:19Z
dc.date.available2018-01-09T17:19:35Z
dc.date.available2018-11-06T12:58:19Z
dc.date.created2018-01-09T17:19:35Z
dc.date.issued2014-02
dc.identifierYahorau, U.; Pianzola, Arturo; Gille, P.; Chernousov, V.; A cohomological proof of Peterson-Kac's theorem of conjugacy of Cartan subalgebras of affine Kac-Moody Lie algebras; Elsevier; Journal of Algebra; 399; 2-2014; 55-78
dc.identifier0021-8693
dc.identifierhttp://hdl.handle.net/11336/32669
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1871733
dc.description.abstractThis paper deals with the problem of conjugacy of Cartan subalgebras for affine Kac-Moody Lie algebras. Unlike the methods used by Peterson and Kac, our approach is entirely cohomological and geometric. It is deeply rooted on the theory of reductive group schemes developed by Demazure and Grothendieck, and on the work of J. Tits on buildings.
dc.languageeng
dc.publisherElsevier
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1205.0669
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869313005577
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jalgebra.2013.09.037
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectConjucacy
dc.subjectCartan subalgebras
dc.subjectAffine Kac-Moody Lie algebras
dc.subjectNon-abelian cohomology
dc.titleA cohomological proof of Peterson-Kac's theorem of conjugacy of Cartan subalgebras of affine Kac-Moody Lie algebras
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución