dc.creatorRoda, Fernando
dc.creatorMusulin, Estanislao
dc.date.accessioned2017-12-05T16:00:52Z
dc.date.accessioned2018-11-06T12:54:43Z
dc.date.available2017-12-05T16:00:52Z
dc.date.available2018-11-06T12:54:43Z
dc.date.created2017-12-05T16:00:52Z
dc.date.issued2014-12
dc.identifierRoda, Fernando; Musulin, Estanislao; An ontology-based framework to support intelligent data analysis of sensor measurements; Pergamon-Elsevier Science Ltd.; Expert Systems with Applications; 41; 17; 12-2014; 7914-7926
dc.identifier0957-4174
dc.identifierhttp://hdl.handle.net/11336/29715
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1871086
dc.description.abstractIn the past years, the large availability of sensed data highlighted the need of computer-aided systems that perform intelligent data analysis (IDA) over the obtained data streams. Temporal abstractions (TAs) are key to interpret the principle encoded within the data, but their usefulness depends on an efficient management of domain knowledge. In this article, an ontology-based framework for IDA is presented. It is based on a knowledge model composed by two existing ontologies (Semantic Sensor Network ontology (SSN), SWRL Temporal Ontology (SWRLTO)) and a new developed one: the Temporal Abstractions Ontology (TAO). SSN conceptualizes sensor measurements, thus enabling a full integration with semantic sensor web (SSW) technologies. SWRLTO provides temporal modeling and reasoning. TAO has been designed to capture the semantic of TAs. These ontologies have been aligned through DOLCE Ultra-Lite (DUL) upper ontology, boosting the integration with other domains. The resulting knowledge model has a modular design that facilitates the integration, exchange and reuse of its constitutive parts. The framework is sketched in a chemical plant case study. It is shown how complex temporal patterns that combine several variables and representation schemes can be used to infer process states and/or conditions
dc.languageeng
dc.publisherPergamon-Elsevier Science Ltd.
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.eswa.2014.06.033
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0957417414003741
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectINTELLIGENT DATA ANALYSIS
dc.subjectTEMPORAL ABSTRACTION
dc.subjectTEMPORAL REASONING
dc.subjectONTOLOGY
dc.subjectSEMANTIC SENSOR WEB
dc.subjectDESCRIPTION LOGIC
dc.titleAn ontology-based framework to support intelligent data analysis of sensor measurements
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución