dc.creatorJeronimo, Gabriela Tali
dc.creatorPerrucci, Daniel Roberto
dc.creatorSabia, Juan Vicente Rafael
dc.date.accessioned2017-05-16T16:02:29Z
dc.date.accessioned2018-11-06T12:53:42Z
dc.date.available2017-05-16T16:02:29Z
dc.date.available2018-11-06T12:53:42Z
dc.date.created2017-05-16T16:02:29Z
dc.date.issued2010-07
dc.identifierJeronimo, Gabriela Tali; Perrucci, Daniel Roberto; Sabia, Juan Vicente Rafael; On sign conditions over real multivariate polynomials; Springer; Discrete And Computational Geometry; 44; 1; 7-2010; 195-222
dc.identifier0179-5376
dc.identifierhttp://hdl.handle.net/11336/16539
dc.identifier1432-0444
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1870926
dc.description.abstractWe present a new probabilistic algorithm to find a finite set of points intersecting the closure of each connected component of the realization of every sign condition over a family of real polynomials defining regular hypersurfaces that intersect transversally. This enables us to show a probabilistic procedure to list all feasible sign conditions over the polynomials. In addition, we extend these results to the case of closed sign conditions over an arbitrary family of real multivariate polynomials. The complexity bounds for these procedures improve the known ones.
dc.languageeng
dc.publisherSpringer
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00454-009-9200-4
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00454-009-9200-4
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectREAL MULTIVARIATE POLYNOMIALS
dc.subjectSIGN CONDITIONS
dc.subjectCONSISTENCY PROBLEM
dc.subjectCOMPLEXITY
dc.titleOn sign conditions over real multivariate polynomials
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución