dc.creatorHerrera, Maria Georgina
dc.creatorZamarreño, Fernando
dc.creatorCostabel, Marcelo Daniel
dc.creatorRitacco, Hernán Alejandro
dc.creatorHütten, Andreas
dc.creatorSewald, Norbert
dc.creatorDodero, Veronica Isabel
dc.date.accessioned2015-09-22T20:01:00Z
dc.date.accessioned2018-11-06T12:46:01Z
dc.date.available2015-09-22T20:01:00Z
dc.date.available2018-11-06T12:46:01Z
dc.date.created2015-09-22T20:01:00Z
dc.date.issued2014-01
dc.identifierHerrera, Maria Georgina; Zamarreño, Fernando; Costabel, Marcelo Daniel; Ritacco, Hernán Alejandro; Hütten, Andreas; et al.; Circular Dichroism and Electron Microscopy Studies In Vitro of 33-mer Gliadin Peptide Revealed Secondary Structure Transition and Supramolecular Organization; Wiley; Biopolymers; 101; 1; 1-2014; 96-106
dc.identifier1097-0282
dc.identifierhttp://hdl.handle.net/11336/2046
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1869899
dc.description.abstractGliadin, a protein present in wheat, rye, and barley, undergoes incomplete enzymatic degradation during digestion, producing an immunogenic 33-mer peptide, LQLQPF(PQPQLPY)3 PQPQPF. The special features of 33-mer that provoke a break in its tolerance leading to gliadin sensitivity and celiac disease remains elusive. Herein, it is reported that 33-mer gliadin peptide was not only able to fold into polyproline II secondary structure but also depending on concentration resulted in conformational transition and self-assembly under aqueous condition, pH 7.0. A 33-mer dimer is presented as one initial possible step in the self-assembling process obtained by partial electrostatics charge distribution calculation and molecular dynamics. In addition, electron microscopy experiments revealed supramolecular organization of 33-mer into colloidal nanospheres. In the presence of 1 mMsodium citrate, 1 mMsodium borate, 1 mMsodium phosphate buffer, 15 mMNaCl, the nanospheres were stabilized, whereas in water, a linear organization and formation of fibrils were observed. It is hypothesized that the self-assembling process could be the result of the combination of hydrophobic effect, intramolecular hydrogen bonding, and electrostatic complementarity due to 33-mer’s high content of proline and glutamine amino acids and its calculated nonionic amphiphilic character. Although, performed in vitro, these experiments have revealed new features of the 33-mer gliadin peptide that could represent an important and unprecedented event in the early stage of 33-mer interaction with the gut mucosa prior to onset of inflammation. Moreover, these findings may open new perspectives for the understanding and treatment of gliadin intolerance disorders.
dc.languageeng
dc.publisherWiley
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/bip.22288
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/bip.22288/abstract
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subject33-MER
dc.subjectGLIADIN PEPTIDE
dc.subjectCIRCULAR-DICHROISM
dc.subjectELECTRON MICROSCOPY
dc.subjectSUPRAMOLECULAR ORGANIZATION
dc.subjectGLIADIN INTOLERANCE
dc.titleCircular Dichroism and Electron Microscopy Studies In Vitro of 33-mer Gliadin Peptide Revealed Secondary Structure Transition and Supramolecular Organization
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución