dc.creatorGaspoz, Fernando Daniel
dc.creatorMorin, Pedro
dc.date.accessioned2017-02-22T19:09:08Z
dc.date.accessioned2018-11-06T12:38:08Z
dc.date.available2017-02-22T19:09:08Z
dc.date.available2018-11-06T12:38:08Z
dc.date.created2017-02-22T19:09:08Z
dc.date.issued2014-07
dc.identifierGaspoz, Fernando Daniel; Morin, Pedro; Approximation classes for adaptive higher order finite element approximation; Amer Mathematical Soc; Mathematics Of Computation; 83; 289; 7-2014; 2127-2160
dc.identifier0025-5718
dc.identifierhttp://hdl.handle.net/11336/13319
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1868524
dc.description.abstractWe provide an almost characterization of the approximation classes appearing when using adaptive finite elements of Lagrange type of any fixed polynomial degree. The characterization is stated in terms of Besov regularity, and requires the approximation within spaces with integrability indices below one. This article generalizes to higher order nite elements the results presented for linear nite elements by Binev et. al.
dc.languageeng
dc.publisherAmer Mathematical Soc
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/mcom/2014-83-289/S0025-5718-2013-02777-9/S0025-5718-2013-02777-9.pdf
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectadaptive finite elements
dc.subjectBesov spaces
dc.subjectconvergence rates
dc.subjectapproximation classes
dc.titleApproximation classes for adaptive higher order finite element approximation
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución