dc.creatorCortiñas, Guillermo Horacio
dc.creatorHaesemeyer, Christian
dc.creatorWalker, Mark E.
dc.creatorWeibel, Charles A.
dc.date.accessioned2017-04-05T18:21:27Z
dc.date.accessioned2018-11-06T12:37:51Z
dc.date.available2017-04-05T18:21:27Z
dc.date.available2018-11-06T12:37:51Z
dc.date.created2017-04-05T18:21:27Z
dc.date.issued2013-04
dc.identifierCortiñas, Guillermo Horacio; Haesemeyer, Christian; Walker, Mark E.; Weibel, Charles A.; Toric varieties, monoid schemes and cdh descent; de Gruyter; Journal Fur Die Reine Und Angewandte Mathematik; 2015; 698; 4-2013; 1-50
dc.identifier0075-4102
dc.identifierhttp://hdl.handle.net/11336/14842
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1868468
dc.description.abstractWe give conditions for the Mayer-Vietoris property to hold for the algebraic K-theory of blow-up squares of toric varieties in any characteristic, using the theory of monoid schemes. These conditions are used to relate algebraic K-theory to topological cyclic homology in characteristic p. To achieve our goals, we develop for monoid schemes many notions from classical algebraic geometry, such as separated and proper maps.
dc.languageeng
dc.publisherde Gruyter
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.degruyter.com/view/j/crelle.ahead-of-print/crelle-2012-0123/crelle-2012-0123.xml
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1515/crelle-2012-0123
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectToric varieties
dc.subjectSchemes over the field with one element
dc.subjectK-theory
dc.subjectCyclotomic trace
dc.titleToric varieties, monoid schemes and cdh descent
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución