dc.creatorKlobouk, Abel H.
dc.creatorVarela, Alejandro
dc.date.accessioned2018-05-28T14:57:53Z
dc.date.accessioned2018-11-06T12:36:43Z
dc.date.available2018-05-28T14:57:53Z
dc.date.available2018-11-06T12:36:43Z
dc.date.created2018-05-28T14:57:53Z
dc.date.issued2017-12
dc.identifierKlobouk, Abel H.; Varela, Alejandro; Concrete minimal 3 × 3 Hermitian matrices and some general cases; De Gruyter; Demonstratio Mathematica; 50; 1; 12-2017; 330-350
dc.identifierhttp://hdl.handle.net/11336/46235
dc.identifier2391-4661
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1868283
dc.description.abstractGiven a Hermitian matrix M ∈ M3(ℂ) we describe explicitly the real diagonal matrices DM such that ║M + DM║ ≤ ║M + D║ for all real diagonal matrices D ∈ M3(ℂ), where ║ · ║ denotes the operator norm. Moreover, we generalize our techniques to some n × n cases.
dc.languageeng
dc.publisherDe Gruyter
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.degruyter.com/view/j/dema.2017.50.issue-1/dema-2017-0032/dema-2017-0032.xml
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1515/dema-2017-0032
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectMINIMAL HERMITIAN MATRIX
dc.subjectDIAGONAL MATRIX
dc.subjectQUOTIENT OPERATOR NORM
dc.subjectBEST APROXIMATION
dc.titleConcrete minimal 3 × 3 Hermitian matrices and some general cases
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución