dc.creatorCortiñas, Guillermo Horacio
dc.creatorHaesemeyer, C.
dc.creatorWalker, Mark E.
dc.creatorWeibel, C.
dc.date.accessioned2017-06-23T19:13:26Z
dc.date.accessioned2018-11-06T12:35:25Z
dc.date.available2017-06-23T19:13:26Z
dc.date.available2018-11-06T12:35:25Z
dc.date.created2017-06-23T19:13:26Z
dc.date.issued2014-03
dc.identifierCortiñas, Guillermo Horacio; Haesemeyer, C.; Walker, Mark E.; Weibel, C.; The K-theory of toric varieties in positive characteristic; London Math Soc; Journal Of Topology; 7; 1; 3-2014; 247-286
dc.identifier1753-8416
dc.identifierhttp://hdl.handle.net/11336/18781
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1868079
dc.description.abstractWe show that if X is a toric scheme over a regular ring containing a field of finite characteristic, then the direct limit of the K-groups of X taken over any infinite sequence of non-trivial dilations is homotopy invariant. This theorem was known in characteristic 0. The affine case of our result was conjectured by Gubeladze.
dc.languageeng
dc.publisherLondon Math Soc
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1112/jtopol/jtt026
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1112/jtopol/jtt026/abstract
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectK-theory
dc.subjectTopological cyclic homology
dc.subjectMonoid scheme
dc.subjectGubeladze's nilpotency conjecture.
dc.titleThe K-theory of toric varieties in positive characteristic
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución