dc.creator | Cortiñas, Guillermo Horacio | |
dc.creator | Haesemeyer, C. | |
dc.creator | Walker, Mark E. | |
dc.creator | Weibel, C. | |
dc.date.accessioned | 2017-06-23T19:13:26Z | |
dc.date.accessioned | 2018-11-06T12:35:25Z | |
dc.date.available | 2017-06-23T19:13:26Z | |
dc.date.available | 2018-11-06T12:35:25Z | |
dc.date.created | 2017-06-23T19:13:26Z | |
dc.date.issued | 2014-03 | |
dc.identifier | Cortiñas, Guillermo Horacio; Haesemeyer, C.; Walker, Mark E.; Weibel, C.; The K-theory of toric varieties in positive characteristic; London Math Soc; Journal Of Topology; 7; 1; 3-2014; 247-286 | |
dc.identifier | 1753-8416 | |
dc.identifier | http://hdl.handle.net/11336/18781 | |
dc.identifier | CONICET Digital | |
dc.identifier | CONICET | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1868079 | |
dc.description.abstract | We show that if X is a toric scheme over a regular ring containing a field of finite characteristic, then the direct limit of the K-groups of X taken over any infinite sequence of non-trivial dilations is homotopy invariant. This theorem was known in characteristic 0. The affine case of our result was conjectured by Gubeladze. | |
dc.language | eng | |
dc.publisher | London Math Soc | |
dc.relation | info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1112/jtopol/jtt026 | |
dc.relation | info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1112/jtopol/jtt026/abstract | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
dc.rights | info:eu-repo/semantics/restrictedAccess | |
dc.subject | K-theory | |
dc.subject | Topological cyclic homology | |
dc.subject | Monoid scheme | |
dc.subject | Gubeladze's nilpotency conjecture. | |
dc.title | The K-theory of toric varieties in positive characteristic | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas | |