dc.creatorNovaes, M.
dc.creatorPedrosa, Juan Manuel
dc.creatorWisniacki, Diego Ariel
dc.creatorCarlo, Gabriel Gustavo
dc.creatorKeating, J. P.
dc.date.accessioned2018-10-01T17:24:23Z
dc.date.available2018-10-01T17:24:23Z
dc.date.created2018-10-01T17:24:23Z
dc.date.issued2009-09
dc.identifierNovaes, M.; Pedrosa, Juan Manuel; Wisniacki, Diego Ariel; Carlo, Gabriel Gustavo; Keating, J. P.; Quantum chaotic resonances from short periodic orbits; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 80; 3; 9-2009; 1-4
dc.identifier1539-3755
dc.identifierhttp://hdl.handle.net/11336/61378
dc.identifierCONICET Digital
dc.identifierCONICET
dc.description.abstractWe present an approach to calculating the quantum resonances and resonance wave functions of chaotic scattering systems, based on the construction of states localized on classical periodic orbits and adapted to the dynamics. Typically only a few such states are necessary for constructing a resonance. Using only short orbits (with periods up to the Ehrenfest time), we obtain approximations to the longest-living states, avoiding computation of the background of short living states. This makes our approach considerably more efficient than previous ones. The number of long-lived states produced within our formulation is in agreement with the fractal Weyl law conjectured recently in this setting. We confirm the accuracy of the approximations using the open quantum baker map as an example. © 2009 The American Physical Society.
dc.languageeng
dc.publisherAmerican Physical Society
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://link.aps.org/doi/10.1103/PhysRevE.80.035202
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1103/PhysRevE.80.035202
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectLocalization
dc.subjectQuantum
dc.subjectOpen
dc.subjectSystems
dc.titleQuantum chaotic resonances from short periodic orbits
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución