dc.creator | Tirao, Juan Alfredo | |
dc.creator | Zurrián, Ignacio Nahuel | |
dc.date.accessioned | 2018-01-03T19:03:05Z | |
dc.date.available | 2018-01-03T19:03:05Z | |
dc.date.created | 2018-01-03T19:03:05Z | |
dc.date.issued | 2014-01 | |
dc.identifier | Tirao, Juan Alfredo; Zurrián, Ignacio Nahuel; Spherical Functions: The Spheres Vs. The Projective Spaces; Heldermann Verlag; Journal Of Lie Theory; 24; 1-2014; 147-157 | |
dc.identifier | 0949-5932 | |
dc.identifier | http://hdl.handle.net/11336/32176 | |
dc.identifier | CONICET Digital | |
dc.identifier | CONICET | |
dc.description.abstract | In this paper we establish a close relationship between the spherical functions of the n-dimensional sphere $S^n\simeq\SO(n+1)/\SO(n)$ and the spherical functions of the n-dimensional real projective space $P^n(\mathbb{R})\simeq\SO(n+1)/\mathrm{O}(n)$. In fact, for n odd a function on $\SO(n+1)$ is an irreducible spherical function of some type $\pi\in\hat\SO(n)$ if and only if it is an irreducible spherical function of some type γ∈O^(n). When n is even this is also true for certain types, and in the other cases we exhibit a clear correspondence between the irreducible spherical functions of both pairs $(\SO(n+1),\SO(n))$ and $(\SO(n+1),\mathrm{O}(n))$. Summarizing, to find all spherical functions of one pair is equivalent to do so for the other pair. | |
dc.language | eng | |
dc.publisher | Heldermann Verlag | |
dc.relation | info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1207.0024 | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Spherical Functions | |
dc.subject | Orthogonal Group | |
dc.subject | Special Orthogonal Group | |
dc.subject | Group Representations. | |
dc.title | Spherical Functions: The Spheres Vs. The Projective Spaces | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:ar-repo/semantics/artículo | |
dc.type | info:eu-repo/semantics/publishedVersion | |