dc.creatorTirao, Juan Alfredo
dc.creatorZurrián, Ignacio Nahuel
dc.date.accessioned2018-01-03T19:03:05Z
dc.date.available2018-01-03T19:03:05Z
dc.date.created2018-01-03T19:03:05Z
dc.date.issued2014-01
dc.identifierTirao, Juan Alfredo; Zurrián, Ignacio Nahuel; Spherical Functions: The Spheres Vs. The Projective Spaces; Heldermann Verlag; Journal Of Lie Theory; 24; 1-2014; 147-157
dc.identifier0949-5932
dc.identifierhttp://hdl.handle.net/11336/32176
dc.identifierCONICET Digital
dc.identifierCONICET
dc.description.abstractIn this paper we establish a close relationship between the spherical functions of the n-dimensional sphere $S^n\simeq\SO(n+1)/\SO(n)$ and the spherical functions of the n-dimensional real projective space $P^n(\mathbb{R})\simeq\SO(n+1)/\mathrm{O}(n)$. In fact, for n odd a function on $\SO(n+1)$ is an irreducible spherical function of some type $\pi\in\hat\SO(n)$ if and only if it is an irreducible spherical function of some type γ∈O^(n). When n is even this is also true for certain types, and in the other cases we exhibit a clear correspondence between the irreducible spherical functions of both pairs $(\SO(n+1),\SO(n))$ and $(\SO(n+1),\mathrm{O}(n))$. Summarizing, to find all spherical functions of one pair is equivalent to do so for the other pair.
dc.languageeng
dc.publisherHeldermann Verlag
dc.relationinfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1207.0024
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectSpherical Functions
dc.subjectOrthogonal Group
dc.subjectSpecial Orthogonal Group
dc.subjectGroup Representations.
dc.titleSpherical Functions: The Spheres Vs. The Projective Spaces
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución