dc.creatorQuintá, Héctor Ramiro
dc.creatorWilson, Carlos
dc.creatorBlidner, Ada Gabriela
dc.creatorGonzález Billault, Christian
dc.creatorPasquini, Laura Andrea
dc.creatorRabinovich, Gabriel Adrian
dc.creatorPasquini, Juana Maria
dc.date.accessioned2017-06-16T19:31:52Z
dc.date.accessioned2018-11-06T12:23:21Z
dc.date.available2017-06-16T19:31:52Z
dc.date.available2018-11-06T12:23:21Z
dc.date.created2017-06-16T19:31:52Z
dc.date.issued2016-09
dc.identifierQuintá, Héctor Ramiro; Wilson, Carlos; Blidner, Ada Gabriela; González Billault, Christian; Pasquini, Laura Andrea; et al.; Ligand-mediated Galectin-1 endocytosis prevents intraneural H2O2 production promoting F-actin dynamics reactivation and axonal re-growth; Elsevier Inc; Experimental Neurology; 283; Part A; 9-2016; 165-178
dc.identifier0014-4886
dc.identifierhttp://hdl.handle.net/11336/18344
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1865992
dc.description.abstractAxonal growth cone collapse following spinal cord injury (SCI) is promoted by semaphorin3A (Sema3A) signaling via PlexinA4 surface receptor. This interaction triggers intracellular signaling events leading to increased hydrogen peroxide levels which in turn promote filamentous actin (F-actin) destabilization and subsequent inhibition of axonal re-growth. In the current study, we demonstrated that treatment with galectin-1 (Gal-1), in its dimeric form, promotes a decrease in hydrogen peroxide (H2O2) levels and F-actin repolimerization in the growth cone and in the filopodium of neuron surfaces. This effect was dependent on the carbohydrate recognition activity of Gal-1, as it was prevented using a Gal-1 mutant lacking carbohydrate-binding activity. Furthermore, Gal-1 promoted its own active ligand-mediated endocytosis together with the PlexinA4 receptor, through mechanisms involving complex branched N-glycans. In summary, our results suggest that Gal-1, mainly in its dimeric form, promotes re-activation of actin cytoskeleton dynamics via internalization of the PlexinA4/Gal-1 complex. This mechanism could explain, at least in part, critical events in axonal regeneration including the full axonal re-growth process, de novo formation of synapse clustering, axonal re-myelination and functional recovery of coordinated locomotor activities in an in vivo acute and chronic SCI model.
dc.languageeng
dc.publisherElsevier Inc
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S001448861630173X?via%3Dihub
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.expneurol.2016.06.009
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectAxonal growth
dc.subjectFilamentous actin
dc.subjectHydrogen peroxide
dc.subjectGalectin-1
dc.subjectPlexinA4
dc.subjectSemaphorin3A
dc.subjectSpinal cord injury
dc.titleLigand-mediated Galectin-1 endocytosis prevents intraneural H2O2 production promoting F-actin dynamics reactivation and axonal re-growth
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución