dc.creatorChristensen, Ingrid Alina
dc.creatorSchiaffino, Silvia Noemi
dc.date.accessioned2018-01-17T20:42:38Z
dc.date.accessioned2018-11-06T12:23:05Z
dc.date.available2018-01-17T20:42:38Z
dc.date.available2018-11-06T12:23:05Z
dc.date.created2018-01-17T20:42:38Z
dc.date.issued2014-04
dc.identifierChristensen, Ingrid Alina; Schiaffino, Silvia Noemi; A Hybrid Approach for Group Profiling in Recommender Systems; Graz University of Technology; Journal of Universal Computer Science; 20; 4; 4-2014; 507-533
dc.identifier0948-695X
dc.identifierhttp://hdl.handle.net/11336/33705
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1865930
dc.description.abstractRecommendation is a significant paradigm for information exploring, which focuses on the recovery of items of potential interest to users. Some activities tend to be social rather than individual, which puts forward the need to offer recommendations to groups of users. Group recommender systems present a whole set of new challenges within the field of recommender systems. In this paper, we present a hybrid approach based on group profiling for homogeneous and non-homogenous groups containing a few distant individual profiles among their members. This approach combines three familiar individual recommendation approaches: collaborative filtering, content-based filtering and demographic information. This hybrid approach allows the detection of those implicit similarities in the user rating profile, so as to include members with divergent profiles. We also describe the promising results obtained when evaluating the approach proposed in the movie and music domain.
dc.languageeng
dc.publisherGraz University of Technology
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3217/jucs-020-04-0507
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.jucs.org/jucs_20_4/a_hybrid_approach_for
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectGROUP PROFILING
dc.subjectGROUP RECOMMENDER SYSTEMS
dc.subjectAGGREGATE RATINGS
dc.subjectHYBRID RECOMMENDER SYSTEMS
dc.titleA Hybrid Approach for Group Profiling in Recommender Systems
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución