Artículos de revistas
The first non-zero Neumann p-fractional eigenvalue
Fecha
2015-01Registro en:
del Pezzo, Leandro Martin; Salort, Ariel Martin; The first non-zero Neumann p-fractional eigenvalue; Pergamon-Elsevier Science Ltd; Journal Of Nonlinear Analysis; 118; 1-2015; 130-143
0362-546X
CONICET Digital
CONICET
Autor
del Pezzo, Leandro Martin
Salort, Ariel Martin
Resumen
In this work we study the asymptotic behavior of the first non-zero Neumann p-fractional eigenvalue λ1(s,p) as s → 1- and as p → ∞. We show that there exists a constant K such that K(1-s)λ1(s,p) goes to the first non-zero Neumann eigenvalue of the p-Laplacian. While in the limit case p → ∞, we prove that λ-(1,s)1/p goes to an eigenvalue of the Hölder ∞-Laplacian.