dc.creatorFigueira, Santiago
dc.creatorNies, André
dc.date.accessioned2017-04-24T15:42:51Z
dc.date.accessioned2018-11-06T12:17:00Z
dc.date.available2017-04-24T15:42:51Z
dc.date.available2018-11-06T12:17:00Z
dc.date.created2017-04-24T15:42:51Z
dc.date.issued2015-04
dc.identifierFigueira, Santiago; Nies, André; Feasible analysis, randomness, and base invariance; Springer; Theory Of Computing Systems; 56; 3; 4-2015; 439-464
dc.identifier1432-4350
dc.identifierhttp://hdl.handle.net/11336/15637
dc.identifier1433-0490
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1865123
dc.description.abstractWe show that polynomial time randomness of a real number does not depend on the choice of a base for representing it. Our main tool is an ‘almost Lipschitz’ condition that we show for the cumulative distribution function associated to martingales with the savings property. Based on a result of Schnorr, we prove that for any base r, n⋅log2n-randomness in base r implies normality in base r, and that n4-randomness in base r implies absolute normality. Our methods yield a construction of an absolutely normal real number which is computable in polynomial time.
dc.languageeng
dc.publisherSpringer
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00224-013-9507-7
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00224-013-9507-7
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectBase invariance
dc.subjectPolynomial time randomness
dc.subjectAnalysis
dc.subjectNormality
dc.subjectMartingales
dc.titleFeasible analysis, randomness, and base invariance
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución