dc.creator | Figueira, Santiago | |
dc.creator | Nies, André | |
dc.date.accessioned | 2017-04-24T15:42:51Z | |
dc.date.accessioned | 2018-11-06T12:17:00Z | |
dc.date.available | 2017-04-24T15:42:51Z | |
dc.date.available | 2018-11-06T12:17:00Z | |
dc.date.created | 2017-04-24T15:42:51Z | |
dc.date.issued | 2015-04 | |
dc.identifier | Figueira, Santiago; Nies, André; Feasible analysis, randomness, and base invariance; Springer; Theory Of Computing Systems; 56; 3; 4-2015; 439-464 | |
dc.identifier | 1432-4350 | |
dc.identifier | http://hdl.handle.net/11336/15637 | |
dc.identifier | 1433-0490 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1865123 | |
dc.description.abstract | We show that polynomial time randomness of a real number does not depend on the choice of a base for representing it. Our main tool is an ‘almost Lipschitz’ condition that we show for the cumulative distribution function associated to martingales with the savings property. Based on a result of Schnorr, we prove that for any base r, n⋅log2n-randomness in base r implies normality in base r, and that n4-randomness in base r implies absolute normality. Our methods yield a construction of an absolutely normal real number which is computable in polynomial time. | |
dc.language | eng | |
dc.publisher | Springer | |
dc.relation | info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00224-013-9507-7 | |
dc.relation | info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00224-013-9507-7 | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
dc.rights | info:eu-repo/semantics/restrictedAccess | |
dc.subject | Base invariance | |
dc.subject | Polynomial time randomness | |
dc.subject | Analysis | |
dc.subject | Normality | |
dc.subject | Martingales | |
dc.title | Feasible analysis, randomness, and base invariance | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas | |