dc.creatorDemicheli, Verónica
dc.creatorMoreno, Diego Martin
dc.creatorJara, Gabriel Ernesto
dc.creatorLima, Analía
dc.creatorCarballal, Sebastián
dc.creatorRíos, Natalia
dc.creatorBatthyany, Carlos
dc.creatorFerrer Sueta, Gerardo
dc.creatorQuijano, Celia
dc.creatorEstrin, Dario Ariel
dc.creatorMarti, Marcelo Adrian
dc.creatorRadi, Rafael
dc.date.accessioned2018-08-06T15:53:58Z
dc.date.accessioned2018-11-06T12:16:06Z
dc.date.available2018-08-06T15:53:58Z
dc.date.available2018-11-06T12:16:06Z
dc.date.created2018-08-06T15:53:58Z
dc.date.issued2016-06
dc.identifierDemicheli, Verónica; Moreno, Diego Martin; Jara, Gabriel Ernesto; Lima, Analía; Carballal, Sebastián; et al.; Mechanism of the Reaction of Human Manganese Superoxide Dismutase with Peroxynitrite: Nitration of Critical Tyrosine 34; American Chemical Society; Biochemistry; 55; 24; 6-2016; 3403-3417
dc.identifier0006-2960
dc.identifierhttp://hdl.handle.net/11336/54248
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1864985
dc.description.abstractHuman Mn-containing superoxide dismutase (hMnSOD) is amitochondrial enzyme that metabolizes superoxide radical (O2?−). O2?− reacts atdiffusional rates with nitric oxide to yield a potent nitrating species, peroxynitriteanion (ONOO−). MnSOD is nitrated and inactivated in vivo, with active siteTyr34 as the key oxidatively modified residue. We previously reported a k of ∼1.0× 105 M−1 s−1 for the reaction of hMnSOD with ONOO− by direct stopped-flowspectroscopy and the critical role of Mn in the nitration process. In this study, wefurther established the mechanism of the reaction of hMnSOD with ONOO−,including the necessary re-examination of the second-order rate constant by anindependent method and the delineation of the microscopic steps that lead to theregio-specific nitration of Tyr34. The redetermination of k was performed bycompetition kinetics utilizing coumarin boronic acid, which reacts with ONOO−at a rate of ∼1 × 106 M−1 s−1 to yield the fluorescence product, 7-hydroxycoumarin. Time-resolved fluorescence studies in the presence of increasing concentrations of hMnSOD provided a kof ∼1.0 × 105 M−1 s−1, fully consistent with the direct method. Proteomic analysis indicated that ONOO−, but not othernitrating agents, mediates the selective modification of active site Tyr34. Hybrid quantum-classical (quantum mechanics/molecular mechanics) simulations supported a series of steps that involve the initial reaction of ONOO− with MnIII to yield MnIVand intermediates that ultimately culminate in 3-nitroTyr34. The data reported herein provide a kinetic and mechanistic basis forrationalizing how MnSOD constitutes an intramitochondrial target for ONOO− and the microscopic events, with atomic levelresolution, that lead to selective and efficient nitration of critical Tyr34.
dc.languageeng
dc.publisherAmerican Chemical Society
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1021/acs.biochem.6b00045
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.biochem.6b00045
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectNITRATION
dc.subjectSOD
dc.subjectQM-MM
dc.titleMechanism of the Reaction of Human Manganese Superoxide Dismutase with Peroxynitrite: Nitration of Critical Tyrosine 34
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución