dc.creatorPintarelli, María Beatriz
dc.creatorVericat, Fernando
dc.date.accessioned2018-01-18T20:51:04Z
dc.date.accessioned2018-11-06T12:15:26Z
dc.date.available2018-01-18T20:51:04Z
dc.date.available2018-11-06T12:15:26Z
dc.date.created2018-01-18T20:51:04Z
dc.date.issued2014-10
dc.identifierPintarelli, María Beatriz; Vericat, Fernando; Partial Differential Equations as Three-Dimensional Inverse Problem of Moments; David Publishing; Journal of Mathematics and System Science; 2014; 4; 10-2014; 657-666
dc.identifier2159-5291
dc.identifierhttp://hdl.handle.net/11336/33885
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1864873
dc.description.abstractWe considerer partial differential equations of second order, for example the Klein-Gordon equation, the Poisson equation, on a region E= (a1, b1)x(a2, b2)x(a3, b3). We will see that with a common procedure in all cases, we can write the equation in partial derivatives as an Fredholm integral equation of first kind and will solve this latter with the techniques of inverse problem moments. We will find an approximated solution and bounds for the error of the estimated solution using the techniques on problem of moments.
dc.languageeng
dc.publisherDavid Publishing
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.davidpublisher.org/index.php/Home/Article/index?id=484.html
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectPartial differential equations
dc.subjectFredholm integral equations
dc.subjectGeneralized moment problem
dc.titlePartial Differential Equations as Three-Dimensional Inverse Problem of Moments
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución