Artículos de revistas
Multiloop algebras, iterated loop algebras and extended affine Lie algebras of nullity 2
Date
2014-01Registration in:
Pianzola, Arturo; Allison, Bruce; Berman, Stephen; Multiloop algebras, iterated loop algebras and extended affine Lie algebras of nullity 2; European Mathematical Society; Journal of the European Mathematical Society; 16; 2; 1-2014; 327-385
1435-9855
CONICET Digital
CONICET
Author
Allison, Bruce
Berman, Stephen
Pianzola, Arturo
Abstract
Let M(n) be the class of all multiloop algebras of finite dimensional simple Lie algebras relative to n-tuples of commuting finite order automorphisms. It is a classical result that M(n) the class of all derived algebras modulo their centres of affine Kac-Moody Lie algebras. This combined with the Peterson-Kac conjugacy theorem for affine algebras results in a classification of the algebras in M(1). In this paper, we classify the algebras in M(2), and further determine the relationship between M(2) and two other classes of Lie algebras: the class of all loop algebras of affine Lie algebras and the class of all extended affine Lie algebras of nullity 2.
Related items
Showing items related by title, author, creator and subject.
-
Identidades graduadas em álgebras não-associativas
Silva, Diogo Diniz Pereira da Silva e -
Introdução elementar às álgebras Clifford 'CL IND.2' 'CL IND. 3'
Resende, Adriana Souza -
Identidades polinomiais em álgebras matriciais sobre a álgebra de Grassmann
Mello, Thiago Castilho de, 1984-