dc.creatorTorres, Pablo Daniel
dc.date.accessioned2018-06-28T16:48:58Z
dc.date.accessioned2018-11-06T12:13:21Z
dc.date.available2018-06-28T16:48:58Z
dc.date.available2018-11-06T12:13:21Z
dc.date.created2018-06-28T16:48:58Z
dc.date.issued2017-08
dc.identifierTorres, Pablo Daniel; The automorphism group of the s-stable Kneser graphs; Academic Press Inc Elsevier Science; Advances In Applied Mathematics; 89; 8-2017; 67-75
dc.identifier0196-8858
dc.identifierhttp://hdl.handle.net/11336/50371
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1864475
dc.description.abstractFor k,s≥2, the s-stable Kneser graphs are the graphs with vertex set the k-subsets S of {1,…,n} such that the circular distance between any two elements in S is at least s and two vertices are adjacent if and only if the corresponding k-subsets are disjoint. Braun showed that for n≥2k+1 the automorphism group of the 2-stable Kneser graphs (Schrijver graphs) is isomorphic to the dihedral group of order 2n. In this paper we generalize this result by proving that for s≥2 and n≥sk+1 the automorphism group of the s-stable Kneser graphs also is isomorphic to the dihedral group of order 2n.
dc.languageeng
dc.publisherAcademic Press Inc Elsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.aam.2017.04.001
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0196885817300416
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectAUTOMORPHISM GROUP
dc.subjectSTABLE KNESER GRAPH
dc.titleThe automorphism group of the s-stable Kneser graphs
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución