dc.creatorPlastino, Ángel Luis
dc.creatorRocca, Mario Carlos
dc.date.accessioned2018-06-29T16:48:19Z
dc.date.accessioned2018-11-06T12:12:04Z
dc.date.available2018-06-29T16:48:19Z
dc.date.available2018-11-06T12:12:04Z
dc.date.created2018-06-29T16:48:19Z
dc.date.issued2015-07
dc.identifierPlastino, Ángel Luis; Rocca, Mario Carlos; On the Nature of the Tsallis–Fourier Transform; MDPI; Mathematics; 3; 3; 7-2015; 644-652
dc.identifier2227-7390
dc.identifierhttp://hdl.handle.net/11336/50651
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1864215
dc.description.abstractBy recourse to tempered ultradistributions, we show here that the effect of a q-Fourier transform (qFT) is to map equivalence classes of functions into other classes in a one-to-one fashion. This suggests that Tsallis’ q-statistics may revolve around equivalence classes of distributions and not individual ones, as orthodox statistics does. We solve here the qFT’s non-invertibility issue, but discover a problem that remains open.
dc.languageeng
dc.publisherMDPI
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/math3030644
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.mdpi.com/2227-7390/3/3/644
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectq-Fourier transform
dc.subjectTempered ultradistributions
dc.titleOn the Nature of the Tsallis–Fourier Transform
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución