Artículos de revistas
Verma and simple modules for quantum groups at non-abelian groups
Fecha
2016-10Registro en:
Pogorelsky, Barbara; Vay, Cristian Damian; Verma and simple modules for quantum groups at non-abelian groups; Academic Press Inc Elsevier Science; Advances in Mathematics; 301; 10-2016; 423-457
0001-8708
CONICET Digital
CONICET
Autor
Pogorelsky, Barbara
Vay, Cristian Damian
Resumen
The Drinfeld double D of the bosonization of a finite-dimensional Nichols algebra B(V) over a finite non-abelian group G is called a quantum group at a non-abelian group. We introduce Verma modules over such a quantum group D and prove that a Verma module has simple head and simple socle. This provides two bijective correspondences between the set of simple modules over D and the set of simple modules over the Drinfeld double D(G). As an example, we describe the lattice of submodules of the Verma modules over the quantum group at the symmetric group S3 attached to the 12-dimensional Fomin–Kirillov algebra, computing all the simple modules and calculating their dimensions.