dc.creatorChaio, Claudia Alicia
dc.date.accessioned2018-07-04T15:14:11Z
dc.date.accessioned2018-11-06T12:10:02Z
dc.date.available2018-07-04T15:14:11Z
dc.date.available2018-11-06T12:10:02Z
dc.date.created2018-07-04T15:14:11Z
dc.date.issued2015-09
dc.identifierChaio, Claudia Alicia; Degrees in Auslander-Reiten components with almost split sequences of at most two middle terms; World Scientific; Journal of Algebra and its Applications; 14; 7; 9-2015; 1-27
dc.identifier0219-4988
dc.identifierhttp://hdl.handle.net/11336/51167
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1863853
dc.description.abstractWe consider A to be an artin algebra. We study the degrees of irreducible morphisms between modules in Auslander-Reiten components Gamma having only almost split sequences with at most two indecomposable middle terms, that is, alpha(Gamma) leq 2. We prove that if f:X rightarrow Y is an irreducible epimorphism of finite left degree with X or Y indecomposable, then there exists a module Z in Gamma and a morphism varphi in Re^{n}(Z,X) and not in Re^{n+1}(Z,X) for some positive integer n such that f varphi=0. In particular, for such components if A is a finite dimensional algebra over an algebraically closed field and f=(f_1,f_2)^t:X rightarrow Y_1 oplus Y_2 is an irreducible morphism then we show that d_l(f)=d_l(f_1)+ d_l(f_2). We also characterize the artin algebras of finite representation type with alpha(Gamma_A) leq 2 in terms of a finite number of irreducible morphisms with finite degree.
dc.languageeng
dc.publisherWorld Scientific
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1142/S0219498815501066
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0219498815501066
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectIRREDUCIBLE MORPHISMS
dc.subjectREPRESENTATION TYPE
dc.subjectDEGREES
dc.subjectAUSLANDER-REITEN QUIVER
dc.subjectRADICAL
dc.subjectDEGREES
dc.titleDegrees in Auslander-Reiten components with almost split sequences of at most two middle terms
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución