dc.creatorBalog, Martin
dc.creatorHu, Tao
dc.creatorKrizik, Peter
dc.creatorCastro Riglos, Maria Victoria
dc.creatorSaller, Brandon D.
dc.creatorYang, Hanry
dc.creatorSchoenung, Julie M.
dc.creatorLavernia, Enrique J.
dc.date.accessioned2018-06-27T01:04:39Z
dc.date.accessioned2018-11-06T12:07:45Z
dc.date.available2018-06-27T01:04:39Z
dc.date.available2018-11-06T12:07:45Z
dc.date.created2018-06-27T01:04:39Z
dc.date.issued2015-11
dc.identifierBalog, Martin; Hu, Tao; Krizik, Peter; Castro Riglos, Maria Victoria; Saller, Brandon D.; et al.; On the thermal stability of ultrafine-grained Al stabilized by in-situ amorphous Al2O3 network; Elsevier Science Sa; Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing; 648; 11-2015; 61-71
dc.identifier0921-5093
dc.identifierhttp://hdl.handle.net/11336/50248
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1863410
dc.description.abstractBulk Al materials with average grain sizes of 0.47 and 2.4μm, were fabricated by quasi-isostatic forging consolidation of two types of Al powders with average particle sizes of 1.3 and 8.9μm, respectively. By utilizing the native amorphous Al2O3 (am-Al2O3) film on the Al powders surfaces, a continuous, ~7nm thick, am-Al2O3 network was formed in situ in the Al specimens. Systematic investigation of the changes to the am-Al2O3 network embedded in the Al matrix upon heating and annealing up to 600°C was performed by transmission electron microscopy (TEM). At the same time, the stability of the Al grain structure was studied by transmission Kikuchi diffraction (TKD), electron back-scatter diffraction (EBSD), and TEM. The am-Al2O3 network remained stable after annealing at 400°C for 24h. In-situ TEM studies revealed that at temperatures ≥450°C, phase transformation of the am-Al2O3 network to crystalline γ-Al2O3 particles occurred. After annealing at 600°C for 24h the transformation was completed, whereby only nanometric γ-Al2O3 particles with an average size of 28nm resided on the high angle grain boundaries of Al. Due to the pinning effect of γ-Al2O3, the Al grain and subgrain structures remained unchanged during annealing up to 600°C for 24h. The effect of the am-Al2O3→γ-Al2O3 transformation on the mechanical properties of ultrafine- and fine-grained Al is discussed from the standpoint of the underlying mechanisms.
dc.languageeng
dc.publisherElsevier Science Sa
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.msea.2015.09.037
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0921509315303774
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectALUMINA (AL2O3)
dc.subjectALUMINUM (AL)
dc.subjectMETAL MATRIX COMPOSITE (MMC)
dc.subjectPOWDER METALLURGY (PM)
dc.subjectTHERMAL STABILITY
dc.subjectULTRAFINE-GRAINED (UFG) MATERIALS
dc.titleOn the thermal stability of ultrafine-grained Al stabilized by in-situ amorphous Al2O3 network
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución