dc.creatorMolter, Ursula Maria
dc.creatorRela, Ezequiel
dc.date.accessioned2017-06-23T19:12:44Z
dc.date.accessioned2018-11-06T12:05:50Z
dc.date.available2017-06-23T19:12:44Z
dc.date.available2018-11-06T12:05:50Z
dc.date.created2017-06-23T19:12:44Z
dc.date.issued2013-04
dc.identifierMolter, Ursula Maria; Rela, Ezequiel; Small Furstenberg sets; Elsevier Inc; Journal Of Mathematical Analysis And Applications; 400; 2; 4-2013; 475-486
dc.identifier0022-247X
dc.identifierhttp://hdl.handle.net/11336/18776
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1863042
dc.description.abstractFor α in (0, 1], a subset E of R 2 is called a Furstenberg set of type α or Fα-set if for each direction e in the unit circle there is a line segment ℓe in the direction of e such that the Hausdorff dimension of the set E ∩ ℓe is greater than or equal to α. In this paper we use generalized Hausdorff measures to give estimates on the size of these sets. Our main result is to obtain a sharp dimension estimate for a whole class of zero-dimensional Furstenberg type sets. Namely, for hγ (x) = log−γ ( 1 x ), γ > 0, we construct a set Eγ ∈ Fhγ of Hausdorff dimension not greater than 1 2 . Since in a previous work we showed that 1 2 is a lower bound for the Hausdorff dimension of any E ∈ Fhγ , with the present construction, the value 1 2 is sharp for the whole class of Furstenberg sets associated to the zero dimensional functions hγ.
dc.languageeng
dc.publisherElsevier Inc
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jmaa.2012.11.001
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X12009055
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1006.4862
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectFurstenberg Set
dc.subjectHausdorff dimension
dc.subjectKakeya Set
dc.titleSmall Furstenberg sets
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución