dc.creatorCaiafa, Cesar Federico
dc.creatorSole-Casals, Jordi
dc.date.accessioned2016-02-05T20:23:25Z
dc.date.accessioned2018-11-06T12:01:58Z
dc.date.available2016-02-05T20:23:25Z
dc.date.available2018-11-06T12:01:58Z
dc.date.created2016-02-05T20:23:25Z
dc.date.issued2013-12
dc.identifierCaiafa, Cesar Federico; Sole-Casals, Jordi ; A fast gradient approximation for nonlinear blind signal processing; Springer; Cognitive Computation; 5; 4; 12-2013; 483-492
dc.identifier1866-9964
dc.identifierhttp://hdl.handle.net/11336/4091
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1862474
dc.description.abstractWhen dealing with nonlinear blind processing algorithms (deconvolution or post-nonlinear source separation) complex mathematical estimations must be done giving as a result very slow algorithms. This is the case, for example, in speech processing, spike signals deconvolution or microarray data analysis. In this paper, we propose a simple method to reduce computational time for the inversion of Wiener systems or the separation of post-nonlinear mixtures, by using a linear approximation in a minimum-mutual information algorithm. Simulation results demonstrate that linear spline interpolation is fast and accurate, obtaining very good results (similar to those obtained without approximation) while computational time is dramatically decreased. On the other hand, cubic spline interpolation also obtains similar good results, but due to its intrinsically complexity the global algorithm is much more slow and hence not useful for our purpose.
dc.languageeng
dc.publisherSpringer
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s12559-012-9192-x
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s12559-012-9192-x
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s12559-012-9192-x
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectBlind deconvolution
dc.subjectBlind source separation
dc.subjectMinimum mutual information methods
dc.subjectWiener systems
dc.titleA fast gradient approximation for nonlinear blind signal processing
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución