dc.creatorBoente Boente, Graciela Lina
dc.creatorCao, Ricardo
dc.creatorGonzalez Manteiga, Wenceslao
dc.creatorRodriguez, Daniela Andrea
dc.date.accessioned2017-04-05T20:58:49Z
dc.date.accessioned2018-11-06T12:00:51Z
dc.date.available2017-04-05T20:58:49Z
dc.date.available2018-11-06T12:00:51Z
dc.date.created2017-04-05T20:58:49Z
dc.date.issued2013-01
dc.identifierBoente Boente, Graciela Lina; Cao, Ricardo; Gonzalez Manteiga, Wenceslao; Rodriguez, Daniela Andrea; Testing in generalized partly linear models: A robust approach; Elsevier; Statistics & Probability Letters; 83; 1; 1-2013; 203-212
dc.identifier0167-7152
dc.identifierhttp://hdl.handle.net/11336/14885
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1862246
dc.description.abstractIn this paper, we introduce a family of robust statistics which allow to decide between a parametric model and a semiparametric one. More precisely, under a generalized partially linear model, i.e., when the observations satisfy View the MathML source with View the MathML source and H a known link function, we want to test H0:η(t)=α+γt against H1:η is a nonlinear smooth function. A general approach which includes robust estimators based on a robustified deviance or a robustified quasi-likelihood is considered. The asymptotic behavior of the test statistic under the null hypothesis is obtained.
dc.languageeng
dc.publisherElsevier
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167715212003367
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.spl.2012.08.031
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectGeneralized partially linear models
dc.subjectKernel weights
dc.subjectRate of convergence
dc.subjectRobust testing
dc.titleTesting in generalized partly linear models: A robust approach
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución