dc.creatorValdora, Marina Silvia
dc.creatorYohai, Victor Jaime
dc.date.accessioned2017-12-13T18:07:16Z
dc.date.accessioned2018-11-06T11:59:04Z
dc.date.available2017-12-13T18:07:16Z
dc.date.available2018-11-06T11:59:04Z
dc.date.created2017-12-13T18:07:16Z
dc.date.issued2014-03
dc.identifierValdora, Marina Silvia; Yohai, Victor Jaime; Robust estimators for generalized linear models; Elsevier Science; Journal Of Statistical Planning And Inference; 146; 3-2014; 31-48
dc.identifier0378-3758
dc.identifierhttp://hdl.handle.net/11336/30479
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1861853
dc.description.abstractIn this paper we propose a family of robust estimators for generalized linear models. The basic idea is to use an M-estimator after applying a variance stabilizing transformation to the response. We show the consistency and asymptotic normality of these estimators. We also obtain a lower bound for their breakdown point. A Monte Carlo study shows that the proposed estimators compare favorably with respect to other robust estimators for generalized linear models with Poisson response and log link.
dc.languageeng
dc.publisherElsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jspi.2013.09.016
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0378375813002516
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectM-estimators
dc.subjectTransformations
dc.subjectBreakdown point
dc.titleRobust estimators for generalized linear models
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución