dc.creatorBecher, Veronica Andrea
dc.creatorHeiber, Pablo Ariel
dc.creatorSlaman, Theodore A.
dc.date.accessioned2017-12-21T21:18:53Z
dc.date.accessioned2018-11-06T11:57:32Z
dc.date.available2017-12-21T21:18:53Z
dc.date.available2018-11-06T11:57:32Z
dc.date.created2017-12-21T21:18:53Z
dc.date.issued2014-02
dc.identifierSlaman, Theodore A.; Heiber, Pablo Ariel; Becher, Veronica Andrea; Normal numbers and the Borel hierarchy; Polish Academy of Sciences. Institute of Mathematics; Fundamenta Mathematicae; 226; 2-2014; 63-77
dc.identifier0016-2736
dc.identifierhttp://hdl.handle.net/11336/31304
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1861516
dc.description.abstractWe show that the set of absolutely normal numbers is Π03-complete in the Borel hierarchy of subsets of real numbers. Similarly, the set of absolutely normal numbers is Π03-complete in the effective Borel hierarchy.
dc.languageeng
dc.publisherPolish Academy of Sciences. Institute of Mathematics
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.4064/fm226-1-4
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectNORMAL NUMBERS
dc.subjectBOREL HIERARCHY
dc.titleNormal numbers and the Borel hierarchy
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución