dc.creatorRubiolo, Mariano
dc.creatorMilone, Diego Humberto
dc.creatorStegmayer, Georgina
dc.date.accessioned2018-07-12T15:00:01Z
dc.date.accessioned2018-11-06T11:54:07Z
dc.date.available2018-07-12T15:00:01Z
dc.date.available2018-11-06T11:54:07Z
dc.date.created2018-07-12T15:00:01Z
dc.date.issued2015-11
dc.identifierRubiolo, Mariano; Milone, Diego Humberto; Stegmayer, Georgina; Mining Gene Regulatory Networks by Neural Modeling of Expression Time-Series; IEEE Computer Society; Ieee-acm Transactions On Computational Biology And Bioinformatics; 12; 6; 11-2015; 1365-1373
dc.identifier1545-5963
dc.identifierhttp://hdl.handle.net/11336/51843
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1860805
dc.description.abstractDiscovering gene regulatory networks from data is one of the most studied topics in recent years. Neural networks can be successfully used to infer an underlying gene network by modeling expression profiles as times series. This work proposes a novel method based on a pool of neural networks for obtaining a gene regulatory network from a gene expression dataset. They are used for modeling each possible interaction between pairs of genes in the dataset, and a set of mining rules is applied to accurately detect the subjacent relations among genes. The results obtained on artificial and real datasets confirm the method effectiveness for discovering regulatory networks from a proper modeling of the temporal dynamics of gene expression profiles.
dc.languageeng
dc.publisherIEEE Computer Society
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/7080870/
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1109/TCBB.2015.2420551
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectGENE PROFILES
dc.subjectGENE REGULATORY NETWORKS
dc.subjectNEURAL NETWORKS
dc.subjectTIMES SERIES DATA
dc.titleMining Gene Regulatory Networks by Neural Modeling of Expression Time-Series
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución