dc.creator | Aguilera, Néstor Edgardo | |
dc.creator | Katz, Ricardo David | |
dc.creator | Tolomei, Paola Beatriz | |
dc.date.accessioned | 2018-07-26T15:09:44Z | |
dc.date.accessioned | 2018-11-06T11:47:07Z | |
dc.date.available | 2018-07-26T15:09:44Z | |
dc.date.available | 2018-11-06T11:47:07Z | |
dc.date.created | 2018-07-26T15:09:44Z | |
dc.date.issued | 2017-02 | |
dc.identifier | Aguilera, Néstor Edgardo; Katz, Ricardo David; Tolomei, Paola Beatriz; Vertex adjacencies in the set covering polyhedron; Elsevier Science; Discrete Applied Mathematics; 218; 2-2017; 40-56 | |
dc.identifier | 0166-218X | |
dc.identifier | http://hdl.handle.net/11336/53156 | |
dc.identifier | CONICET Digital | |
dc.identifier | CONICET | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1859527 | |
dc.description.abstract | We describe the adjacency of vertices of the (unbounded version of the) set covering polyhedron, in a similar way to the description given by Chvátal for the stable set polytope. We find a sufficient condition for adjacency, and characterize it with similar conditions in the case where the underlying matrix is row circular. We apply our findings to show a new infinite family of minimally nonideal matrices. | |
dc.language | eng | |
dc.publisher | Elsevier Science | |
dc.relation | info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1016/j.dam.2016.10.024 | |
dc.relation | info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166218X16305066 | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
dc.rights | info:eu-repo/semantics/restrictedAccess | |
dc.subject | POLYHEDRAL COMBINATORICS | |
dc.subject | SET COVERING POLYHEDRON | |
dc.subject | VERTEX ADJACENCY | |
dc.title | Vertex adjacencies in the set covering polyhedron | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas | |