dc.creatorAimar, Hugo Alejandro
dc.creatorCarena, Marilina
dc.creatorDuran, Ricardo Guillermo
dc.creatorToschi, Marisa
dc.date.accessioned2017-02-17T20:11:10Z
dc.date.accessioned2018-11-06T11:44:15Z
dc.date.available2017-02-17T20:11:10Z
dc.date.available2018-11-06T11:44:15Z
dc.date.created2017-02-17T20:11:10Z
dc.date.issued2014-02
dc.identifierAimar, Hugo Alejandro; Carena, Marilina; Duran, Ricardo Guillermo; Toschi, Marisa; Powers of distances to lower dimensional sets as Muckenhoupt weights; Springer; Acta Mathematica Hungarica; 143; 1; 2-2014; 119-137
dc.identifier0236-5294
dc.identifierhttp://hdl.handle.net/11336/13169
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1858871
dc.description.abstractLet (X,d,mu) be an Ahlfors metric measure space. We give sufficient conditions on a closed set Fsubseteq X and on a real number eta in such a way that d(x,F)^beta becomes a Muckenhoupt weight. We give also some illustrations to regularity of solutions of partial differential equations and regarding some classical fractals.
dc.languageeng
dc.publisherSpringer
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10474-014-0389-1
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs10474-014-0389-1
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectAhlfors spaces
dc.subjectHardy-Littlewood maximal operator
dc.subjectMuckenhoupt weights
dc.subjectHausdorff measure
dc.titlePowers of distances to lower dimensional sets as Muckenhoupt weights
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución