dc.creatorMattiazzi, Ramona Alicia
dc.creatorArgenziano, Mariana Alejandra
dc.creatorAguilar-Sanchez, Yuriana
dc.creatorMazzocchi, Gabriela
dc.creatorEscobar, Ariel L.
dc.date.accessioned2018-03-05T18:46:44Z
dc.date.available2018-03-05T18:46:44Z
dc.date.created2018-03-05T18:46:44Z
dc.date.issued2015-02
dc.identifierMattiazzi, Ramona Alicia; Argenziano, Mariana Alejandra; Aguilar-Sanchez, Yuriana; Mazzocchi, Gabriela; Escobar, Ariel L.; Ca2+ Sparks and Ca2+ waves are the subcellular events underlying Ca2+ overload during ischemia and reperfusion in perfused intact hearts; Academic Press Ltd - Elsevier Science Ltd; Journal of Molecular and Cellular Cardiology; 79; 2-2015; 69-78
dc.identifier0022-2828
dc.identifierhttp://hdl.handle.net/11336/37807
dc.identifierCONICET Digital
dc.identifierCONICET
dc.description.abstractAbnormal intracellular Ca2+ cycling plays a key role in cardiac dysfunction, particularly during the setting of ischemia/reperfusion (I/R). During ischemia, there is an increase in cytosolic and sarcoplasmic reticulum (SR) Ca2+. At the onset of reperfusion, there is a transient and abrupt increase in cytosolic Ca2++, which occurs timely associated with reperfusion arrhythmias. However, little is known about the subcellular dynamics of Ca2+ increase during I/R, and a possible role of the SR as a mechanism underlying this increase has been previously overlooked. The aim of the present work is to test two main hypotheses: (1) An increase diastolic Ca2+ sparks frequency (cspf) constitutes a mayor substrate for the ischemia-induced diastolic Ca2+ increase; (2) an increase in cytosolic Ca2+ pro-arrhythmogenic events (Ca2+ waves), mediates the abrupt diastolic Ca2+ rise at the onset of reperfusion. We used confocal microscopy on mouse intact hearts loaded with Fluo-4. Hearts were submitted to global I/R (12/30min) to assess epicardial Ca2+ sparks in the whole heart. Intact heart sparks were faster than in isolated myocytes whereas cspf was not different. During ischemia, cspf significantly increased relative to preischemia (2.07±0.33 vs. 1.13±0.20 sp/s/100μm, n=29/34, 7 hearts). Reperfusion significantly changed Ca2+ sparks kinetics, by prolonging Ca2+ sparks rise time and decreased cspf. However, it significantly increased Ca2+ wave frequency relative to ischemia (0.71±0.14 vs. 0.38±0.06 w/s/100μm, n=32/33, 7 hearts). The results show for the first time the assessment of intact perfused heart Ca2+ sparks and provides direct evidence of increased Ca2+ sparks in ischemia that transform into Ca2+ waves during reperfusion. These waves may constitute a main trigger for reperfusion arrhythmias.
dc.languageeng
dc.publisherAcademic Press Ltd - Elsevier Science Ltd
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.yjmcc.2014.10.011
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022282814003320
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectCa2+ Sparks
dc.subjectIntact Heart
dc.subjectIschemia/Reperfusion
dc.titleCa2+ Sparks and Ca2+ waves are the subcellular events underlying Ca2+ overload during ischemia and reperfusion in perfused intact hearts
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución