dc.creatorPerez Mitta, Gonzalo
dc.creatorTuninetti, Jimena Soledad
dc.creatorKnoll, Wolfang
dc.creatorTrautmann, Christina
dc.creatorToimil-Molares, Maria Eugenia
dc.creatorAzzaroni, Omar
dc.date.accessioned2016-04-04T20:20:06Z
dc.date.accessioned2018-11-06T11:43:52Z
dc.date.available2016-04-04T20:20:06Z
dc.date.available2018-11-06T11:43:52Z
dc.date.created2016-04-04T20:20:06Z
dc.date.issued2015-04
dc.identifierPerez Mitta, Gonzalo; Tuninetti, Jimena Soledad; Knoll, Wolfang; Trautmann, Christina; Toimil-Molares, Maria Eugenia; et al.; Polydopamine Meets Solid-State Nanopores: A Bio-inspired Integrative Surface Chemistry Approach to Tailor the Functional Properties of Nanofluidic Diodes; American Chemical Society; Journal of the American Chemical Society; 137; 18; 4-2015; 6011-6017
dc.identifier0002-7863
dc.identifierhttp://hdl.handle.net/11336/5038
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1858702
dc.description.abstractThe ability to modulate the surface chemical characteristics of solid-state nanopores is of great interest as it provides the means to control the macroscopic response of nanofluidic devices. For instance, controlling surface charge and polarity of the pore walls is one of the most important applications of surface modification that is very relevant to attain accurate control over the transport of ions through the nanofluidic architecture. In this work, we describe a new integrative chemical approach to fabricate nanofluidic diodes based on the self-polymerization of dopamine (PDOPA) on asymmetric track-etched nanopores. Our results demonstrate that PDOPA coating is not only a simple and effective method to modify the inner surface of polymer nanopores fully compatible with the fabrication of nanofluidic devices but also a versatile platform for further integration of more complex molecules through different covalent chemistries and self-assembly processes. We adjusted the chemical modification strategy to obtain various configurations of the pore surface: (i) PDOPA layer was used as primer, precursor, or even responsive functional coating; (ii) PDOPA layer was used as a platform for anchoring chemical functions via the Michael addition reaction; and (iii) PDOPA was used as a reactive layer inducing the metallization of the pore walls through the in situ reduction of metallic precursors present in solution. We believe that the transversal concept of integrative surface chemistry offered by polydopamine in combination with the remarkable physical characteristics of asymmetric nanopores constitutes a new framework to design multifunctional nanofluidic devices employing soft chemistry-based nanofunctionalization techniques.
dc.languageeng
dc.publisherAmerican Chemical Society
dc.relationinfo:eu-repo/semantics/altIdentifier/pmid/25879882
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/jacs.5b01638
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/jacs.5b01638
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/10.1021/jacs.5b01638
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectSOLID-STATE NANOPORES
dc.subjectNANOTECHNOLOGY
dc.subjectCHEMICAL NANODEVICES
dc.subjectPOLYDOPAMINE
dc.titlePolydopamine Meets Solid-State Nanopores: A Bio-inspired Integrative Surface Chemistry Approach to Tailor the Functional Properties of Nanofluidic Diodes
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución