dc.creatorHurtado, Martin
dc.creatorMuravchik, Carlos Horacio
dc.creatorNehorai, Arye
dc.date.accessioned2017-08-31T22:03:38Z
dc.date.accessioned2018-11-06T11:42:39Z
dc.date.available2017-08-31T22:03:38Z
dc.date.available2018-11-06T11:42:39Z
dc.date.created2017-08-31T22:03:38Z
dc.date.issued2013-11
dc.identifierHurtado, Martin; Muravchik, Carlos Horacio; Nehorai, Arye; Enhanced Sparse Bayesian Learning via Statistical Thresholding for Signals in Structured Noise; Institute of Electrical and Electronics Engineers; IEEE Transactions On Signal Processing; 61; 21; 11-2013; 5430-5443
dc.identifier1053-587X
dc.identifierhttp://hdl.handle.net/11336/23419
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1858233
dc.description.abstractIn this paper we address the problem of sparse signal reconstruction. We propose a new algorithm that determines the signal support applying statistical thresholding to accept the active components of the model. This adaptive decision test is integrated into the sparse Bayesian learning method, improving its accuracy and reducing convergence time. Moreover, we extend the formulation to accept multiple measurement sequences of signal contaminated by structured noise in addition to white noise. We also develop analytical expressions to evaluate the algorithm estimation error as a function of the problem sparsity and indeterminacy. By simulations, we compare the performance of the proposed algorithm with respect to other existing methods. We show a practical application processing real data of a polarimetric radar to separate the target signal from the clutter.
dc.languageeng
dc.publisherInstitute of Electrical and Electronics Engineers
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TSP.2013.2278811
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/6581884/
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectBayesian estimation
dc.subjectConstant false alarm rate (CFAR)
dc.subjectProbabilistic framework
dc.subjectRadar
dc.subjectRadar detection
dc.subjectSparse model
dc.subjectSparse signal reconstruction
dc.subjectStatistical thresholding
dc.titleEnhanced Sparse Bayesian Learning via Statistical Thresholding for Signals in Structured Noise
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución