dc.creatorMontani, Fernando Fabián
dc.creatorPhoka, Elena
dc.creatorPortesi, Mariela Adelina
dc.creatorSchultz, Simon R.
dc.date.accessioned2017-08-31T21:27:57Z
dc.date.accessioned2018-11-06T11:42:00Z
dc.date.available2017-08-31T21:27:57Z
dc.date.available2018-11-06T11:42:00Z
dc.date.created2017-08-31T21:27:57Z
dc.date.issued2013-03
dc.identifierMontani, Fernando Fabián; Phoka, Elena; Portesi, Mariela Adelina; Schultz, Simon R.; Statistical modelling of higher-order correlations in pools of neural activity; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 392; 14; 3-2013; 3066-3086
dc.identifier0378-4371
dc.identifierhttp://hdl.handle.net/11336/23406
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1857969
dc.description.abstractSimultaneous recordings from multiple neural units allow us to investigate the activity of very large neural ensembles. To understand how large ensembles of neurons process sensory information, it is necessary to develop suitable statistical models to describe the response variability of the recorded spike trains. Using the information geometry framework, it is possible to estimate higher-order correlations by assigning one interaction parameter to each degree of correlation, leading to a (2^N-1)-dimensional model for a population with N neurons. However, this model suffers greatly from a combinatorial explosion, and the number of parameters to be estimated from the available sample size constitutes the main intractability reason of this approach. To quantify the extent of higher than pairwise spike correlations in pools of multiunit activity, we use an information-geometric approach within the framework of the extended central limit theorem considering all possible contributions from higher-order spike correlations. The identification of a deformation parameter allows us to provide a statistical characterisation of the amount of higher-order correlations in the case of a very large neural ensemble, significantly reducing the number of parameters, avoiding the sampling problem, and inferring the underlying dynamical properties of the network within pools of multiunit neural activity.
dc.languageeng
dc.publisherElsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.physa.2013.03.012
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S037843711300215X
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1211.6348
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectNEURAL ACTIVITY
dc.subjectSPIKE CORRELATIONS
dc.subjectHIGH-ORDER CORRELATIONS
dc.subjectINFORMATION-GEOMETRY APPROACH
dc.titleStatistical modelling of higher-order correlations in pools of neural activity
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución