dc.creatorFernández Culma, Edison Alberto
dc.creatorGodoy, Yamile Alejandra
dc.creatorSalvai, Marcos Luis
dc.date.accessioned2018-09-05T20:28:17Z
dc.date.accessioned2018-11-06T11:41:14Z
dc.date.available2018-09-05T20:28:17Z
dc.date.available2018-11-06T11:41:14Z
dc.date.created2018-09-05T20:28:17Z
dc.date.issued2016-11
dc.identifierFernández Culma, Edison Alberto; Godoy, Yamile Alejandra; Salvai, Marcos Luis; Interpolation of geometric structures compatible with a pseudo Riemannian metric; Springer; Manuscripta Mathematica; 151; 3-4; 11-2016; 453-468
dc.identifier0025-2611
dc.identifierhttp://hdl.handle.net/11336/58454
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1857641
dc.description.abstractLet (M, g) be a pseudo Riemannian manifold. We consider four geometric structures on M compatible with g: two almost complex and two almost product structures satisfying additionally certain integrability conditions. For instance, if r is paracomplex and symmetric with respect to g, then r induces a pseudo Riemannian product structure on M. Sometimes the integrability condition is expressed by the closedness of an associated two-form: if j is almost complex on M and ω(x, y) = g(jx, y) is symplectic, then M is almost pseudo Kähler. Now, product, complex and symplectic structures on M are trivial examples of generalized (para)complex structures in the sense of Hitchin. We use the latter in order to define the notion of interpolation of geometric structures compatible with g. We also compute the typical fibers of the twistor bundles of the new structures and give examples for M a Lie group with a left invariant metric.
dc.languageeng
dc.publisherSpringer
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00229-016-0846-y
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s00229-016-0846-y
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subject22F30
dc.subject22F50
dc.subject53B30
dc.subject53B35
dc.subject53C15
dc.subject53C56
dc.subject53D05
dc.titleInterpolation of geometric structures compatible with a pseudo Riemannian metric
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución