dc.creator | De Queiroz, Alvaro A. A. | |
dc.creator | Franca, Ecio J. | |
dc.creator | Abraham, Gustavo Abel | |
dc.creator | Román, Julio S. | |
dc.date.accessioned | 2018-08-06T13:08:43Z | |
dc.date.accessioned | 2018-11-06T11:39:53Z | |
dc.date.available | 2018-08-06T13:08:43Z | |
dc.date.available | 2018-11-06T11:39:53Z | |
dc.date.created | 2018-08-06T13:08:43Z | |
dc.date.issued | 2002-12 | |
dc.identifier | De Queiroz, Alvaro A. A.; Franca, Ecio J.; Abraham, Gustavo Abel; Román, Julio S.; Ring-opening polymerization of ε-caprolactone by iodine charge-transfer complex; John Wiley & Sons Inc; Journal of Polymer Science Part B: Polymer Physics; 40; 8; 12-2002; 714-722 | |
dc.identifier | 0887-6266 | |
dc.identifier | http://hdl.handle.net/11336/54234 | |
dc.identifier | CONICET Digital | |
dc.identifier | CONICET | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1857176 | |
dc.description.abstract | The ring-opening polymerization of ε-caprolactone (ε-CL) catalyzed by iodine (I2) was studied. The formation of a charge-transfer complex (CTC) among triiodide, I3-, and ε-CL was confirmed with ultraviolet-visible spectroscopy. The monomer ε-CL was polymerized in bulk using I2 as a catalyst to form the polyester having apparent weight-average molecular weights of 85,900 and 45,500 at polymerization temperatures of 25 and 70 °C, respectively. The reactivity of both, ε-CL monomer and ε-CL:I2 CTC, was interpreted by means of the potential energy surfaces determined by semiempirical computations (MNDO-d). The results suggest that the formation of the ε-CL:I2 CTC leads to the ring opening of the ε-CL structure with the lactone protonation and the formation of a highly polarized polymerization precursor (ε-CL)+. The band gaps approximated from an extrapolation of the oligomeric polycaprolactone (PCL) structures were computed. With semiempirical quantum chemical calculations, geometries and charge distributions of the protonated polymerization precursor (ε-CL)+ were obtained. The calculated band gap (highest occupied molecular orbit/lowest unoccupied molecular orbit differences) agrees with the experiment. The analysis of the oligomeric PCL isosurfaces indicate the existence of a weakly lone pair character of the C=O and C - O bonds suggesting a ε-CL ring-opening specificity. © 2002 Wiley Periodicals, Inc. J. Polym. Sci. Part B: Polym. Phys. | |
dc.language | eng | |
dc.publisher | John Wiley & Sons Inc | |
dc.relation | info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1002/polb.10133 | |
dc.relation | info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/polb.10133 | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
dc.rights | info:eu-repo/semantics/restrictedAccess | |
dc.subject | CATALYSTS | |
dc.subject | CHARGE TRANSFER | |
dc.subject | POLYESTERS | |
dc.subject | RING-OPENING POLYMERIZATION | |
dc.title | Ring-opening polymerization of ε-caprolactone by iodine charge-transfer complex | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas | |