dc.creatorAllegrini, Franco
dc.creatorOlivieri, Alejandro Cesar
dc.date.accessioned2018-07-19T19:05:30Z
dc.date.accessioned2018-11-06T11:39:35Z
dc.date.available2018-07-19T19:05:30Z
dc.date.available2018-11-06T11:39:35Z
dc.date.created2018-07-19T19:05:30Z
dc.date.issued2016-08
dc.identifierAllegrini, Franco; Olivieri, Alejandro Cesar; Sensitivity, Prediction Uncertainty, and Detection Limit for Artificial Neural Network Calibrations; American Chemical Society; Analytical Chemistry; 88; 15; 8-2016; 7807-7812
dc.identifier0003-2700
dc.identifierhttp://hdl.handle.net/11336/52696
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1857035
dc.description.abstractWith the proliferation of multivariate calibration methods based on artificial neural networks, expressions for the estimation of figures of merit such as sensitivity, prediction uncertainty, and detection limit are urgently needed. This would bring nonlinear multivariate calibration methodologies to the same status as the linear counterparts in terms of comparability. Currently only the average prediction error or the ratio of performance to deviation for a test sample set is employed to characterize and promote neural network calibrations. It is clear that additional information is required. We report for the first time expressions that easily allow one to compute three relevant figures: (1) the sensitivity, which turns out to be sample-dependent, as expected, (2) the prediction uncertainty, and (3) the detection limit. The approach resembles that employed for linear multivariate calibration, i.e., partial least-squares regression, specifically adapted to neural network calibration scenarios. As usual, both simulated and real (near-infrared) spectral data sets serve to illustrate the proposal.
dc.languageeng
dc.publisherAmerican Chemical Society
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.analchem.6b01857
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1021/acs.analchem.6b01857
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectArtifitial Neural Networks calibration
dc.subjectSensitivity
dc.subjectLimit of detection
dc.subjectPrediction uncertainty
dc.titleSensitivity, Prediction Uncertainty, and Detection Limit for Artificial Neural Network Calibrations
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución