dc.creatorHeckenberger, István
dc.creatorVendramin, Claudio Leandro
dc.date.accessioned2018-08-14T18:17:49Z
dc.date.available2018-08-14T18:17:49Z
dc.date.created2018-08-14T18:17:49Z
dc.date.issued2017-02
dc.identifierHeckenberger, István; Vendramin, Claudio Leandro; A classification of Nichols algebras of semisimple Yetter-Drinfeld modules over non-abelian groups; European Mathematical Society; Journal of the European Mathematical Society; 19; 2; 2-2017; 299-356
dc.identifier1435-9855
dc.identifierhttp://hdl.handle.net/11336/55447
dc.identifierCONICET Digital
dc.identifierCONICET
dc.description.abstractOver fields of arbitrary characteristic we classify all braid-indecomposable tuples of at least two absolutely simple Yetter-Drinfeld modules over non-abelian groups such that the group is generated by the support of the tuple and the Nichols algebra of the tuple is finite-dimensional. Such tuples are classified in terms of analogs of Dynkin diagrams which encode much information about the Yetter-Drinfeld modules. We also compute the dimensions of these finite-dimensional Nichols algebras. Our proof uses essentially theWeyl groupoid of a tuple of simple Yetter-Drinfeld modules and our previous result on pairs.
dc.languageeng
dc.publisherEuropean Mathematical Society
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.4171/JEMS/667
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.ems-ph.org/journals/show_abstract.php?issn=1435-9855&vol=19&iss=2&rank=1
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectHopf Algebra
dc.subjectNichols Algebra
dc.subjectWeyl Groupoid
dc.titleA classification of Nichols algebras of semisimple Yetter-Drinfeld modules over non-abelian groups
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución