dc.creatorGonçalves, Bruna Amin
dc.creatorCarpi, Laura
dc.creatorRosso, Osvaldo Aníbal
dc.creatorRavetti, Martín G.
dc.date.accessioned2018-05-29T21:37:21Z
dc.date.accessioned2018-11-06T11:36:14Z
dc.date.available2018-05-29T21:37:21Z
dc.date.available2018-11-06T11:36:14Z
dc.date.created2018-05-29T21:37:21Z
dc.date.issued2016-12
dc.identifierGonçalves, Bruna Amin; Carpi, Laura; Rosso, Osvaldo Aníbal; Ravetti, Martín G.; Time series characterization via horizontal visibility graph and Information Theory; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 464; 12-2016; 93-102
dc.identifier0378-4371
dc.identifierhttp://hdl.handle.net/11336/46546
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1855561
dc.description.abstractComplex networks theory have gained wider applicability since methods for transformation of time series to networks were proposed and successfully tested. In the last few years, horizontal visibility graph has become a popular method due to its simplicity and good results when applied to natural and artificially generated data. In this work, we explore different ways of extracting information from the network constructed from the horizontal visibility graph and evaluated by Information Theory quantifiers. Most works use the degreedistribution of the network, however, we found alternative probability distributions, more efficient than the degree distribution in characterizing dynamical systems. In particular, we find that, when using distributions based on distances and amplitude values, significant shorter time series are required. We analyze fractional Brownian motion time series, and a paleoclimatic proxy record of ENSO from the Pallcacocha Lake to study dynamical changes during the Holocene.
dc.languageeng
dc.publisherElsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1016/j.physa.2016.07.063
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378437116304940
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectTIME SERIES ANALYSIS
dc.subjectCOMPLEX NETWORKS
dc.subjectINFORMATION THEORY QUANTIFIERS
dc.titleTime series characterization via horizontal visibility graph and Information Theory
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución