dc.creatorCagliero, Leandro Roberto
dc.creatorSzchetman, Fernando
dc.date.accessioned2018-01-03T18:27:01Z
dc.date.available2018-01-03T18:27:01Z
dc.date.created2018-01-03T18:27:01Z
dc.date.issued2014-12
dc.identifierCagliero, Leandro Roberto; Szchetman, Fernando; On the theorem of the primitive element with applications to the representation theory of associative and Lie algebras; Canadian Mathematical Soc; Canadian Mathematical Bulletin-bulletin Canadien de Mathematiques; 57; 12-2014; 735-748
dc.identifier0008-4395
dc.identifierhttp://hdl.handle.net/11336/32141
dc.identifierCONICET Digital
dc.identifierCONICET
dc.description.abstractWe describe of all finite dimensional uniserial representations of a commutative associative (resp. abelian Lie) algebra over a perfect (resp. sufficiently large perfect) field. In the Lie case the size of the field depends on the answer to following question, considered and solved in this paper. Let $K/F$ be a finite separable field extension and let $x,yin K$. When is $F[x,y]=F[alpha x+eta y]$ for some non-zero elements $alpha,etain F$?
dc.languageeng
dc.publisherCanadian Mathematical Soc
dc.relationinfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1306.3965
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/canadian-mathematical-bulletin/article/on-the-theorem-of-the-primitive-element-with-applications-to-the-representation-theory-of-associative-and-lie-algebras/D8877328E0421D85BB4D0FC2A1181C1A
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectUniserial Module
dc.subjectLie Algebra
dc.subjectAssociative Algebra
dc.subjectPrimitive Element
dc.titleOn the theorem of the primitive element with applications to the representation theory of associative and Lie algebras
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución