dc.creatorCabral, Juan Bautista
dc.creatorSánchez, Bruno Orlando
dc.creatorBeroiz, Martin Isidro Ramon
dc.creatorDominguez Romero, Mariano Javier de Leon
dc.creatorLares Harbin Latorre, Marcelo
dc.creatorGurovich, Sebastian
dc.creatorGranitto, Pablo Miguel
dc.date.accessioned2018-11-02T21:18:56Z
dc.date.accessioned2018-11-06T11:34:24Z
dc.date.available2018-11-02T21:18:56Z
dc.date.available2018-11-06T11:34:24Z
dc.date.created2018-11-02T21:18:56Z
dc.date.issued2017-07
dc.identifierCabral, Juan Bautista; Sánchez, Bruno Orlando; Beroiz, Martin Isidro Ramon; Dominguez Romero, Mariano Javier de Leon; Lares Harbin Latorre, Marcelo; et al.; Corral framework: Trustworthy and fully functional data intensive parallel astronomical pipelines; Elsevier Science; Astronomy and Computing; 20; 7-2017; 140-154
dc.identifier2213-1337
dc.identifierhttp://hdl.handle.net/11336/63575
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1854996
dc.description.abstractData processing pipelines represent an important slice of the astronomical software library that include chains of processes that transform raw data into valuable information via data reduction and analysis. In this work we present Corral, a Python framework for astronomical pipeline generation. Corral features a Model-View-Controller design pattern on top of an SQL Relational Database capable of handling: custom data models; processing stages; and communication alerts, and also provides automatic quality and structural metrics based on unit testing. The Model-View-Controller provides concept separation between the user logic and the data models, delivering at the same time multi-processing and distributed computing capabilities. Corral represents an improvement over commonly found data processing pipelines in astronomysince the design pattern eases the programmer from dealing with processing flow and parallelization issues, allowing them to focus on the specific algorithms needed for the successive data transformations and at the same time provides a broad measure of quality over the created pipeline. Corral and working examples of pipelines that use it are available to the community at https://github.com/toros-astro.
dc.languageeng
dc.publisherElsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S2213133717300069
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ascom.2017.07.003
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectASTROINFORMATICS
dc.subjectASTRONOMICAL PIPELINE
dc.subjectDESIGN PATTERNS
dc.subjectMULTIPROCESSING
dc.subjectSOFTWARE AND ITS ENGINEERING
dc.titleCorral framework: Trustworthy and fully functional data intensive parallel astronomical pipelines
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución