dc.creatorCarando, Daniel Germán
dc.creatorDimant, Veronica Isabel
dc.creatorMuro, Luis Santiago Miguel
dc.date.accessioned2017-06-05T21:18:00Z
dc.date.accessioned2018-11-06T11:31:41Z
dc.date.available2017-06-05T21:18:00Z
dc.date.available2018-11-06T11:31:41Z
dc.date.created2017-06-05T21:18:00Z
dc.date.issued2010-01
dc.identifierCarando, Daniel Germán; Dimant, Veronica Isabel; Muro, Luis Santiago Miguel; Holomorphic functions and polynomial ideals on Banach spaces; Springer; Collectanea Mathematica; 73; 1; 1-2010; 71-91
dc.identifier0010-0757
dc.identifierhttp://hdl.handle.net/11336/17535
dc.identifier2038-4815
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1854227
dc.description.abstractGiven A a multiplicative sequence of polynomial ideals, we consider the associated algebra of holomorphic functions of bounded type, HbA(E). We prove that, under very natural conditions satisfied by many usual classes of polynomials, the spectrum MbA(E) of this algebra “behaves” like the classical case of Mb(E) (the spectrum of Hb(E), the algebra of bounded type holomorphic functions). More precisely, we prove that MbA(E) can be endowed with a structure of Riemann domain over E and that the extension of each f ∈ HbA(E) to the spectrum is an A-holomorphic function of bounded type in each connected component. We also prove a Banach-Stone type theorem for these algebras.
dc.languageeng
dc.publisherSpringer
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s13348-010-0025-5
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs13348-010-0025-5
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectPOLYNOMIAL IDEALS
dc.subjectHOLOMORPHIC FUNCTIONS
dc.subjectRIEMANN DOMAINS OVER BANACH SPACES
dc.titleHolomorphic functions and polynomial ideals on Banach spaces
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución