dc.creatorBarrios, B.
dc.creatordel Pezzo, Leandro Martin
dc.creatorGarcia Melian, Jorge
dc.creatorQuaas, A.
dc.date.accessioned2018-09-18T19:56:17Z
dc.date.accessioned2018-11-06T11:31:27Z
dc.date.available2018-09-18T19:56:17Z
dc.date.available2018-11-06T11:31:27Z
dc.date.created2018-09-18T19:56:17Z
dc.date.issued2017-04
dc.identifierBarrios, B.; del Pezzo, Leandro Martin; Garcia Melian, Jorge; Quaas, A.; Monotonicity of solutions for some nonlocal elliptic problems in half-spaces ; Springer; Calculus Of Variations And Partial Differential Equations; 56; 2; 4-2017; 1-16
dc.identifier0944-2669
dc.identifierhttp://hdl.handle.net/11336/60138
dc.identifier1432-0835
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1854122
dc.description.abstractIn this paper we consider classical solutions u of the semilinear fractional problem (- Δ) su= f(u) in R+N with u= 0 in RNR+N, where (- Δ) s, 0 < s< 1 , stands for the fractional laplacian, N≥ 2 , R+N={x=(x′,xN)∈RN:xN>0} is the half-space and f∈ C1 is a given function. With no additional restriction on the function f, we show that bounded, nonnegative, nontrivial classical solutions are indeed positive in R+N and verify (Formula presented.). This is in contrast with previously known results for the local case s= 1 , where nonnegative solutions which are not positive do exist and the monotonicity property above is not known to hold in general even for positive solutions when f(0) < 0.
dc.languageeng
dc.publisherSpringer
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00526-017-1133-9
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00526-017-1133-9
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1606.01061
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subject35S15
dc.subject45M20
dc.subject47G10
dc.titleMonotonicity of solutions for some nonlocal elliptic problems in half-spaces
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución