dc.creatorDari, Enzo Alberto
dc.creatorDuran, Ricardo Guillermo
dc.creatorPadra, Claudio
dc.date.accessioned2017-07-07T21:09:45Z
dc.date.accessioned2018-11-06T11:31:17Z
dc.date.available2017-07-07T21:09:45Z
dc.date.available2018-11-06T11:31:17Z
dc.date.created2017-07-07T21:09:45Z
dc.date.issued2012-05
dc.identifierDari, Enzo Alberto; Duran, Ricardo Guillermo; Padra, Claudio; A posteriori error estimates for non-conforming approximation of eigenvalue problems; Elsevier Science; Applied Numerical Mathematics; 62; 5; 5-2012; 580-591
dc.identifier0168-9274
dc.identifierhttp://hdl.handle.net/11336/19935
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1854042
dc.description.abstractWe consider the approximation of eigenvalue problem for the Laplacian by the Crouzeix– Raviart non-conforming finite elements in two and three dimensions. Extending known techniques for source problems, we introduce a posteriori error estimators for eigenvectors and eigenvalues. We prove that the error estimator is equivalent to the energy norm of the eigenvector error up to higher order terms. Moreover, we prove that our estimator provides an upper bound for the error in the approximation of the first eigenvalue, also up to higher order terms. We present numerical examples of an adaptive procedure based on our error estimator in two and three dimensions. These examples show that the error in the adaptive procedure is optimal in terms of the number of degrees of freedom.
dc.languageeng
dc.publisherElsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.apnum.2012.01.005
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0168927412000220
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectA POSTERIORI ERROR ESTIMATES
dc.subjectNON CONFORMING METHODS
dc.subjectEIGENVALUES
dc.titleA posteriori error estimates for non-conforming approximation of eigenvalue problems
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución