dc.creatorMutlu, Belgin
dc.creatorVeas, Eduardo Enrique
dc.creatorTrattner, Christoph
dc.creatorSabol, Vedran
dc.date.accessioned2018-09-12T20:44:30Z
dc.date.accessioned2018-11-06T11:30:39Z
dc.date.available2018-09-12T20:44:30Z
dc.date.available2018-11-06T11:30:39Z
dc.date.created2018-09-12T20:44:30Z
dc.date.issued2015-06
dc.identifierMutlu, Belgin; Veas, Eduardo Enrique; Trattner, Christoph; Sabol, Vedran; Towards a Recommender Engine for Personalized Visualizations; Springer; Lecture Notes in Computer Science; 9146; 6-2015; 169-182
dc.identifier0302-9743
dc.identifierhttp://hdl.handle.net/11336/59455
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1853771
dc.description.abstractVisualizations have a distinctive advantage when dealing with the information overload problem: since they are grounded in basic visual cognition, many people understand them. However, creating them requires specific expertise of the domain and underlying data to determine the right representation. Although there are rules that help generate them, the results are too broad to account for varying user preferences. To tackle this issue, we propose a novel recommender system that suggests visualizations based on (i) a set of visual cognition rules and (ii) user preferences collected in Amazon-Mechanical Turk. The main contribution of this paper is the introduction and the evaluation of a novel approach called VizRec that can suggest an optimal list of top-n visualizations for heterogeneous data sources in a personalized manner.
dc.languageeng
dc.publisherSpringer
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1007/978-3-319-20267-9_14
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-319-20267-9_14
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectCOLLABORATIVE FILTERING
dc.subjectCROWD-SOURCING
dc.subjectPERSONALIZED VISUALIZATIONS
dc.subjectRECOMMENDER SYSTEMS
dc.subjectVISUALIZATION RECOMMENDER
dc.titleTowards a Recommender Engine for Personalized Visualizations
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución