dc.creatorPividori, Milton Damián
dc.creatorStegmayer, Georgina
dc.creatorMilone, Diego Humberto
dc.date.accessioned2017-12-22T17:00:07Z
dc.date.accessioned2018-11-06T11:30:31Z
dc.date.available2017-12-22T17:00:07Z
dc.date.available2018-11-06T11:30:31Z
dc.date.created2017-12-22T17:00:07Z
dc.date.issued2014-03
dc.identifierMilone, Diego Humberto; Stegmayer, Georgina; Pividori, Milton Damián; A Method to Improve the Analysis of Cluster Ensembles; Sociedad Iberoamericana de Inteligencia Artificial; Inteligencia Artificial; 17; 53; 3-2014; 46-56
dc.identifier1137-3601
dc.identifierhttp://hdl.handle.net/11336/31392
dc.identifier1988-3064
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1853730
dc.description.abstractClustering is fundamental to understand the structure of data. In the past decade the cluster ensembleproblem has been introduced, which combines a set of partitions (an ensemble) of the data to obtain a singleconsensus solution that outperforms all the ensemble members. However, there is disagreement about which arethe best ensemble characteristics to obtain a good performance: some authors have suggested that highly differentpartitions within the ensemble are beneï¬ cial for the ï¬ nal performance, whereas others have stated that mediumdiversity among them is better. While there are several measures to quantify the diversity, a better method toanalyze the best ensemble characteristics is necessary. This paper introduces a new ensemble generation strategyand a method to make slight changes in its structure. Experimental results on six datasets suggest that this isan important step towards a more systematic approach to analyze the impact of the ensemble characteristics onthe overall consensus performance.
dc.languageeng
dc.publisherSociedad Iberoamericana de Inteligencia Artificial
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://journaldocs.iberamia.org/articles/1051/article%20(1).pdf
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.redalyc.org/html/925/92530455006/
dc.rightshttps://creativecommons.org/licenses/by-nc/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectConsensus Clustering
dc.subjectEnsemble Diversity
dc.subjectCluster Ensemble Generation
dc.titleA Method to Improve the Analysis of Cluster Ensembles
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución